

1. (i) Describe the structure of a C program with an example program. (16)

Documentation section:

 It contains a set of comment lines used to specify the name of program the author

 and other details etc.,

Comments:

 Comments are very helpful in identifying the program features and underlying logic

 of the program.

 The single line comments using “\\”.

 The lines begins with „/*‟ and ending with „*/‟ are known as comment lines.

 These are not executable, the compiler is ignored anything in between /* and */.

Preprocessor section:

 It is used to link system library files for defining the macros and for defining the

 conditional inclusion.

 Eg: #include<stdio.h>, #define A 10, #if def , #endif....etc.

Global declaration section:

 The variables that are used in more than one function throughout the program are

 called global variables and declared outside of all the function i.e., before main().

 Every „C‟ program must have one main() function, which specify the starting of „C‟

 program. It contains the following two parts.

Various elements of „C‟ program:

 Comment: /* program for temperature conversion */

 Header file: #include<stdio.h>

 Preprocessor directories: #define con 1.8 //Constant

 Reserved words: int main ()

 {

 Variable type: float c,f //Standard identifiers

 Control string: printf(“enter the Celsius values.......”);

 Special character: scanf(“%f”, &c);

 Execution character: f = (con * c)+32;

 printf(“\n Fahrenheit value of the given %f Celsius value is

 %f”, c,f);

Reserved word:return(0);

 }

Documentation section

Preprocessor section

Definition section

Global declaration section

Void Main()

{

Declaration part;

Executable part;

}

Sub program section

{

Body of the sub program;

}

Declaration part:

 This part is used to declare all the variables that are used in the executable part of

 the program and these are called local variables.

Executable part:

 It contains atleast one valid „C‟ statement.

 The execution of a program begins with opening brace

 „{„and ends with closing brace „}‟.

 The closing brace of the main function is the logical end of the program.

 All the statements in the program ends with a semicolon(;) except conditional and

 control statements.

--

2. (i) Describe in detail about different data types in „C‟ with suitable examples. (8)

Data types:

 Data type is the type of the data, that are going to access within the program.

 Each data type may have predefined memory requirement and storage

representation.

 Data type or just type determines the possible values that an identifier can have and the

valid operations that can be applied on it. Data types are broadly classified

1.Basic data types (primitive data types)

 a) Character (char)

 b) Integer (int)

 c) Single-precision floating point (float)

 d) Double-precision floating point (double)

 e) No value available (void)

2.Derived data types:
 These data types are derived from the basic data types.

 a) Array type e.g. char[], int[], etc.

 b) Pointer type e.g. char *, int *, etc.

 c) Function type e.g. int (int, int), float (int), etc

1. User-defined data types:

 These data types can be created by using:

 a) Structure

 b) Union

 c) Enumeration

Primary User defined Derived

char Structures Arrays

int Union Pointers

float Enumeration Function

Double

void

2.) (ii) Define constants. Explain the various types of constants in C. (8)

 A constant is an entity whose value remains the same throughout the

 execution of a program. It cannot be placed on the left side of the assignment

 operator because it does not have a modifiable L-value. It can only be placed on the

 right side of the assignment operator.

 1. Literal Constant:

 2. Qualified Constant:

 3. Symbolic Constant:

1. Literal Constant:

 i. Integer Literal Constant:
i. Integer literal constants are integer values like –1, 2, 8, etc. The rules for

ii. writing integer literal constants are:

iii. a. An integer literal constant must have at least one digit and should not have

any decimal point.

iv. b. It can be either positive or negative. No special characters are allowed within

an integer literal.

v. c. If an integer literal constant starts with 0 (zero), then it is assumed to be in an

octal number

vi. system, e.g. 023 is a valid octal integer literal constant [i.e. (23)8 = (19)10].

vii. d. If an integer literal constant starts with 0x or 0X, it is assumed to be in a

hexadecimal number

viii. system, e.g. 0x23 or 0X23 is a valid hexadecimal integer literal constant [i.e.

(23)16=(35)10].

ix. e. The size of the integer literal constant can be modified by using a length

modifier.

x. – If the integer literal constant is terminated with l or L then it is assumed to be

long (e.g. 23l).

xi. – If it is terminated with u or U, then it is assumed to be an unsigned integer

(e.g. 23u).

 ii. Floating Point Literal Constant:

 Floating point literal constants are values like –23.1, 12.8, –1.8e12,

 etc. These constants can be written in a fractional form or in an exponential form. The rules for

 writing floating point literal constants in a fractional form are:

 a. A fractional floating point constant must have at least one digit and should have

 a decimal point.

 b. It can be either positive or negative. No special characters are allowed within a

 floating point literal constant.

 c. A floating point literal by default is assumed to be of type double, e.g. the type

 of 23.45 is double.

 d. The size of the floating point literal constant can be modified by using the

 length modifier f or F, i.e. if 23.45 is written as 23.45f or 23.45F, then it is

 considered to be of type float.

 The rules for writing floating point literal constants in an exponential form

 are:

 a. A floating point literal constant in an exponential form has two parts:

 the mantissa and the exponent. Both parts are separated by e or E.

 b. The mantissa can be either positive or negative and should have at least

 one digit. The mantissa part can have a decimal point but it is not

 mandatory.

 c. The exponent part must have at least one digit and can be either positive

 or negative. The exponent part cannot have a decimal point.

 d. No special characters are allowed within the mantissa part and the

 exponent part. Example: 2e10 (i.e. equivalent to 2 × 1010)

 iii. Character Literal Constant:

 A character literal constant can have one or at most two characters

 Enclosed within single quotes, e.g. „A‟, „a‟, „\n‟, etc. Character literal constants

 are classified as:

 a. Printable Character Literal Constant: All characters of source character set except

 quotation mark, backslash and new line character when enclosed within single

 quotes form a printable character literal constant.

 Examples: „A‟, „#‟, „6‟, etc.

 b. Non-printable Character Literal Constant: These constants are represented with the

 help of escape sequences. An escape sequence consists of a backslash (i.e. \)

 followed by a character and both enclosed within single quotes. An escape

 sequence is treated as a single character and can be used in a string like any other

 printable character. A list of escape sequences are given below:

 iv. String Literal Constant:

 A string literal constant consists of a sequence of characters enclosed within

 double quotes.

 Each string constant is implicitly terminated by a null character (i.e. „\0‟).

 Hence, the number of bytes occupied by a string constant is one more than the number of

 characters present in the string. However, the terminating null character is not counted

 while determining the length of a string.

 For example,

 the length of the string “ABC” is 3 although it occupies 4 bytes of memory.

 2.Qualified Constant:

 Qualified constants are created by using const qualifier. Since qualified constants are

 placed in the memory, they have L-value. However, as it is not possible to modify them, they

do not have a modifiable L-value.

 Example: const int a=10.

3.Symbolic Constant:

 Symbolic constants are created with the help of the define pre-processor directive. Each

symbolic constant is replaced by its actual value during the pre-processing stage.

For Example, #define PI 3.1429 defines PI as a symbolic constant with value 3.1429.

3).Explain the different types of operators available in C with example.(16)

 (May 2015) 4

 Using Operators in “C”

 The operators in C are classified into two categories.

a. Classification Based on the Number of Operands

b. Classification Based on Role of Operator

1. Classification Based on the Number of Operands

 Based upon the number of operands on which an operator operates, the operators are classified

 as:

 i) Unar y operators :
 A unary operator operates on only one operand. The operand can be present

 towards the right (e.g. –a) or towards the left of the unary operator (e.g. a++).

 Examples: – (unary minus), & (address-of-operator), sizeof operator, (logical negation),

 ~ (bitwise negation), ++ (increment), -- (decrement), etc.

 ii) Binary operators :

 A binary operator operates on two operands. It requires an operand towards its

 left and right.

 Examples: * (multiplication operator), / (division operator), << (left shift operator),

 == (equality operator), && (logical AND), & (bitwise AND), etc.

 iii) Ternary operators :
 A ternary operator operates on three operands. Conditional operator (?) is the

only ternary operator available in C.

 Classification Based on Role of Operator

 Based upon the number of operands on which an operator operates, the operators are classified

 as:

i) Arithmetic operators: Arithmetic operations like addition, subtraction, multiplication,

division,etc. can be performed by using arithmetic operators as shown below

S.No. Operator

Name of

Category Type

Precedence Among

Associativity

Operator Arithmetic Class

 + Unary plus

Unary

Level-I R L

1.

– Unary minus

Unary ++ Increment Operators (Highest) (Right-to-Left)

 -- Decrement

 * Multiplication Multiplicative Binary Level-II L R

2. / Division Operators (Intermediate) (Left-to-Right)

 % Modulus

3. + Addition Additive Binary Level-III L R

 – Subtraction Operators (Lowest)

While evaluating arithmetic operations:

a. The parenthesized sub-expressions are evaluated first. If the parentheses are nested, the

innermost sub-expression is evaluated first.

b. The precedence rules are applied to determine the order of application of operators in

evaluating sub-expressions. The associativity rule is applied when two or more operators of

the same precedence appear in the sub-expression.

c. If the operands of a binary arithmetic operator are of different but compatible types, C

automatically applies arithmetic-type conversion or implicit-type conversion or type

promotion. If operands are of different types, the lower type (i.e. smaller in size) should be

converted to a higher type (i.e. bigger in size) so that there is no loss in value or precision.

Binary arithmetic operators can be used in one of the following three different modes:

a. Integer mode : If both the operands of a binary arithmetic operator are of integer type, the

mode of operations is said to be integer mode and the result will be of integer type.

Example: The result of 4 / 3 will be 1 instead of 1.3333.

b. Floating point mode : If both the operands of a binary arithmetic operator are of floating

point type, the mode of operation is said to be floating point type and the result will be of

floating point type.

Example: 4.0 / 3.0 = 1.333333.

 c. Mixed mode : If one of the operands of a binary arithmetic operator is of integer type and

 another operand is of floating point type, the mode of operation is said to

 be mixed mode. The operand of integer type is promoted to floating point

type and the result will be of floating point type.

Example: 4/3.0=1.333333.

#include<stdio.h> The evaluation of the expression given in the program is as follows:

main() a = 2 * 3.25 + ((3 + 6) / 2);

{ = 2 * 3.25 + (9 / 2);

int a; = 2 * 3.25 + 4;

a = 2 * 3.25 + ((3 + 6) / 2); = 6.50 + 4;

printf(“Result is %d”, a);
} = 10;

 The variable a is declared as int, and hence the value (i.e. 10.50) is

Output:

 automatically converted to an integer type and assigned to a.

 Since a higher type is converted to a lower type, it is said that the

Result is 10 higher type is demoted to the lower type and this conversion is

 called demotion or truncation.

Increment / Decrement Operator:

 It has two forms:

– Pre-increment / Pre-decrement operator: The operator appears towards the left side of its

operand (e.g. ++a or --a).

– Post-increment / Post-decrement operator: The operator appears towards the right side of its

operand (e.g. a++ or a--).

Increment / decrement operator is a token (i.e. one unit). There should be no white-space

 character between two „+‟ symbols or two „–‟ symbols. If white space is placed between two

„+‟ symbols or two „–‟ symbols, they become two unary plus (+) or two unary minus (–) operators.

The increment / decrement operator can only be applied to an operand that has a modifiable l-

value. The value of ++a or a++ is equivalent to a = a + 1. Similarly the value of --a or a-- is

equivalent to a = a – 1.

Difference between pre-increment / pre-decrement and post-increment / post-decrement

operator:

– In case of the pre-increment / pre-decrement operator, first the value of its operand is

incremented / decremented and then it is used for the evaluation of expression.

– In case of the post-increment / post-decrement operator, the value of operand is used first for the

evaluation of the expression and after its use the value of operand is incremented / decremented.

#include<stdio.h> Output:

main() a=3, b=3, c=3, d=2

{

Reasons:

int a = 2, b = 2, c, d;

• The value of a is incremented and then it is

c = ++a;

assigned to c.

d = b++;

• The value of b is assigned to d before it is printf(“a=%d, b=%d, c=%d, d=%d”, a, b, c, d);

}
incremented.

Modulus Operator: The modulus operator (%) is used to find the remainder. The operands of

modulus operator must be of integer type. The sign of the result of evaluation of modulus operator

depends only on the sign of the numerator.

ii) Relational operators: An expression that involves a relational operator forms a condition. The result

of evaluation of a relational expression (i.e. involving relational operators) is a boolean constant,

i.e. 0 (false) or 1 (true). The relational operators shown below are used to compare two operands.

S.No.

Operator

 Name of

Category Type

Precedence Among

Associativity

Operator Relational Class

1. < Less than

 ? Greater than

 <= Less than or Relational

Binary Level-I L R

equal to operators

 >= Greater than or

 equal to

2. == Equal to Equality

Binary Level-II L R

!=

Not equal to operators

Example: Output:

#include<stdio.h> The value of a is 1.

main() Reason:

{

• The expression a = 2 < 3 != 2 is interpreted as a = (2 < 3) != 2. int n;

a = 2 < 3 != 2;
 The sub-expression 2 < 3 is true (i.e. 1). 1 != 2 is true (i.e. 1).

So, 1 is assigned to a.

printf(“The value of a is %d”, a);

}

iii) Logical operators: The logical operators listed below are used to logically relate the sub-expressions.

S.No. Operator Name of Category Type Precedence Among Associativity

 Operator Logical Class

1. ! Logical NOT Unary Unary Level-I R L

2. && Logical AND

Logical

Binary Level-II L R operator

3. || Logical OR

Logical

Binary Level-III L R

operator

Logical operators consider operand as an entity (i.e. a unit) and they operate according to the

truth table given below:

AND Operation OR Operation NOT operation

Operand1 Operand2 Operand3 Operand1 Operand2 Operand3 Operand Result

False False False False False True False True

False True False False True True True False

True False False True False True

True True True True True True

If an operand of a logical operator is a non-zero value, the operand is considered as true. If the

operand is zero, it is considered as false. Each of the logical operators yields 1 if the specified

relation evaluates to true and 0 if it evaluates to false. The result is of type int.

In an expression E1 && E2, where E1 and E2 are sub-expressions, E1 is evaluated first. If E1

evaluates to 0 (i.e. false), E2 will not be evaluated and the result of the overall expression will be 0

(i.e. false). If E1 evaluates to a non-zero value (i.e. true) then E2 will be evaluated to determine the

truth value of the overall expression.

In an expression E1 || E2, where E1 and E2 are sub-expressions, E1 is evaluated first. If E1

evaluates to a non-zero value (i.e. true), E2 will not be evaluated and the result of the overall

expression will be 1 (i.e. true). If E1 evaluates to 0 (i.e. false), then E2 will be evaluated to

determine the truth value of the overall expression.

iv) Bitwise operators: The C language provides six operators for bit manipulation and operates on the

individual bits of the operands. These operators can only be applied on operands of type char,

short, int, long, whether signed or unsigned.

S.No. Operator Name of Category Type Precedence Among Associativity

 Operator Bitwise Class

1. ~ Bitwise NOT Unary Unary Level-I R L

2.

<< Left Shift Shift

Binary Level-II L R >> Right Shift Operators

3. & Bitwise AND

Bitwise

Binary Level-III L R

Operator

4. ^ Bitwise X-OR

Bitwise

Binary Level-IV L R Operator

5. | Bitwise OR

Bitwise

Binary Level-V L R

Operator

The bitwise-AND and the bitwise-OR operators operate on the individual bits of the operands

according to the truth table specified above. X-OR operates according to the truth table given below:

X-OR Operation

Operand1 Operand2 Result

False False False

False True True

True False True

True True False

The bitwise-NOT operator results in 1‟s complement of its operand. Left shift by n bits is

equivalent to multiplication by 2
n
, provided the magnitude does not overflow. Right shift by n bits

is equivalent to integer division by 2
n
.

v) Assignment operators: A variable can be assigned a value by using an assignment operator. The

assignment operators available in C language are given below:

Name of

 Precedence

S.No. Operator Category Type Among Associativity

Operator

Bitwise Class

1. = Simple assignment Assignment Binary Level-I R L

 &

 *= Assign product Shorthand

 /= Assign quotient Assignment

 %= Assign modulus Operators

 += Assign sum

 -= Assign difference

 &= Assign bitwise

 != AND

 ^= Assign bitwise OR

 <<= Assign bitwise

 >>= XOR

 Assign left shift

 Assign right shift

The operand that appears towards the left side of an assignment operator should have a

modifiable L-value. The shorthand assignment is of the form op1 op= op2, where op1 and op2 are

operands and op= is a shorthand assignment operator. For example, a /= 2 is equivalent to a = a / 2.

There should be no whitespace character between two symbols of shorthand assignment operators.

If two operands of an assignment operator are of different types, the type of operand on the

right side of the assignment operator is automatically converted to the type of operand present on

its left side. To carry out this conversion, either promotion or demotion is applied.Differences

between initialization and assignment

Initialization Assignment

 Value of a data object after initialization can be

First time assignment at the time of definition is

changed by the means of assignment.

Example: Consider the following statements

called initialization. Example: int a = 10; is int a = 10;

initialization of a. a = 20;

 The value of a is changed to 20 by the

 assignment statement.

Initialization can be done only once. Assignment can be done any number of times.

Qualified constant can be initialized with a value. Qualified constant cannot be assigned a value. It

Example: const int a = 10; is valid.

is erroneous to write a = 10; if a is a qualified

constant.

vi) Miscellaneous operators: Other operators available in C are:

a) Function Call Operator (i.e. ())

b) Array Subscript Operator (i.e. [])

c) Member select operator

d) Indirection Operator

(i) Direct Member Access Operator (i.e. . (dot operator or period))

(ii) Indirect Member Access Operator (i.e. -> (arrow operator))

e) Conditional Operator: Conditional operator is the only ternary operator available in C.

Name of

 Precedence

S.No. Operator Category Type Among Associativity

Operator

Bitwise Class

1. ?:

Conditional

Conditional Ternary Level-I R L

operator

The general form of condition operator is

E1 ? E2 : E3

where E1, E2 and E3 are sub-expressions. The sub-expression E1 is evaluated first. If it evaluates

to a non-zero value (i.e. true), then E2 is evaluated and E3 is ignored. If E1 evaluates to zero (i.e.

false), then E3 is evaluated and E2 is ignored.

f) Comma Operator: The comma operator is used to join multiple expressions together. The comma

operator guarantees left-to-right evaluation. In expression E1, E2, E3, …, En are evaluated in left-

to-right order. The result and type of evaluation of the overall expression is the value and type of

the evaluation of the rightmost sub-expression (En). The comma operator has least precedence.

Example: Reason:

#include<stdio.h> • The precedence of assignment operator is greater than

main() comma operator.

{

int a, b;

• Thus, in the expression a = 1, 2, 3, 4, 5, the sub-

expression a = 1 gets evaluated first. Hence, the value

a = 1, 2, 3, 4, 5;

assigned to a is 1.

b = (1, 2, 3, 4, 5);

• In the expression b = (1, 2, 3, 4, 5), the sub- printf(“The values of a and b are:\n”);

 printf(“%d\t%d”, a, b); expression 1, 2, 3, 4, 5 is parenthesized and will be

} evaluated first. The result of evaluation of comma

Output:

 operator is the result of evaluation of the rightmost

sub-expression, i.e. 5. Thus, (1, 2, 3, 4, 5) evaluates to

The values of a and b are:

 5 and is assigned to b.

1 5

g) sizeof Operator: The sizeof operator is used to determine the size in bytes, which a value or a

data object will take in memory. The general form of a sizeof operator is:

11

(i) sizeof expression or sizeof (expression) Example: sizeof 2, sizeof(a), sizeof(2 + 3)

(ii) sizeof (type-name) Example: sizeof(int), sizeof(char)

The type of result of evaluation of the sizeof operator is int. The operand of the sizeof operator is not

evaluated. This operator cannot be applied on operands of incomplete type or function type.

h) Address-of Operator: The address-of operator is used to find the address of a data object and

must appear towards the left side of its operand. The operand of the address-of operator should

be a variable or a function designator. This operator cannot be applied to constants, expressions,

bit-fields and to the variables declared with register storage class.

S.No. Operator Name of Operator Category Type Precedence Associativity

 () Function call

1.

[] Array subscript Level-I

-> Indirect member access

(Highest)

 . Direct member access

 ! Logical NOT

 ~ Bitwise NOT

 + Unary plus

 – Unary minus

Unary

2. ++ Increment Unary Level-II RL

operators

-- Decrement

 & Address-of

 * Dereference

 sizeof Sizeof

 * Multiplication

Multiplication

3. / Division

Level-III LR

operators

% Modulus

4.

+ Addition Additive

Level-IV LR

– Subtraction operators

5.

<< Left shift Shift

Level-V LR

>> Right shift operators

 < Less than

Relational

6.

> Greater than

Binary Level-VI LR

<= Less than or equal to operators

 >= Greater than or equal to

7.

== Equal to Equality

Level-VII LR

!= Not equal to operators

8. & Bitwise AND

Bitwise

 Level-VIII LR

9. ^ Bitwise X-OR

Level-IX LR

operator

10. | Bitwise OR

Level-X LR

11. && Logical AND Logical Level-XI LR

12. || Logical OR operator Level-XII LR

13. ?: Conditional operator Conditional Ternary Level-XIII RL

 = Simple assignment

 *= Assign product

 /= Assign quotient

 %= Assign modulus

Assignment &

+= Assign sum

Shorthand

Binary Level-XIV RL 14. -= Assign difference

assignment

&= Assign bitwise AND

operators

|= Assign bitwise OR

 ^= Assign bitwise XOR

 <<= Assign left shift

 >>= Assign right shift

 12

15. , Comma operator Comma Level-XV LR

4.(i) Construct and explain the concept of operator precedence and associativity

of

 operators with examples.(8)

 – Precedence of Operators:

 Each operator in C has a precedence associated with it. In a compound

expression, if the operators used in the expression are of different precedence, the operator of

higher precedence operates first.

For example,

 in an expression b = 2 + 3 * 5, the sub-expression 3 * 5 is evaluated first as the

 multiplication operator has the highest precedence among =, + and *. In the resultant

 expression, the sub-expression 2 + 15 is evaluated next as the addition operator (i.e. +)

 has a higher precedence than the assignment operator (i.e. =). Finally, the assignment

 operator assigns the value 17 to b.

 If two or more operators in a compound expression are of the same precedence, to

 determine which of these operators will operate first, the associativity of these operators

 is to be considered.

 – Associativity of Operators:

 The operators with the same precedence always have the same associativity. An

 operator can be either left-to-right associative or right-to-left associative. If operators are left-

 to-rightassociative, they are applied in a left-to-right order, and if they are right-to-left

 associative, they will be applied in the right-to-left order.

For example,
 in the expression 2 * 3 / 5, the multiplication operator is evaluated prior to the

division operator as it appears before the division operator in the left-to-right order.

4.(ii) Explain the bitwise operator with an example.(8)

 Answered in IIIrd question 4
th

 point of Bitwise Operator with example

5.Explain the following: (4+4+4+4=16)

i. Keywords ii. Identifiers iii. C character set iv. Expressions.

i. Keywords
 Keyword is a reserved word that has a particular predefined meaning in the

 programming language. A keyword cannot be used as an identifier name in C

 language. There are 32 keywords available in C.

S.No. Keyword S.No. Keyword S.No. Keyword S.No. Keyword

1. auto 9. double 17. int 25. struct

2. break 10. else 18. long 26. switch

3. case 11. enum 19. register 27. typedef

4. char 12. extern 20. return 28. union

5. const 13. float 21. short 29. unsigned

6. continue 14. for 22. signed 30. void

7. default 15. goto 23. sizeof 31. volatile

8. do 16. if 24. static 32. while

II. identifier

 An identifier can be a variable name, a label name, a function name, a

 typedef name, a macro name or a macro parameter, a tag or a member of a structure, a

 union, or an enumeration. The rules to define an identifier in C are as follows:

1. Identifier name in C can have letters, digits or underscores.

2. The first character must be a letter (either uppercase or lowercase) or an underscore.

3. No special character (except underscore) can be used in an identifier name.

4. Keywords or reserved words cannot form a valid identifier name.

5. The maximum number of characters allowed in an identifier name is compiler dependent.

 Student_Name, StudentName, student_name, student1, _student

 type to the compiler before its use. The general form is:

[storage_class_specifier] [type_qualifier][type_modifier] type identifier [=value[…]];

 Example: int variable, int variable=20; int a=20, b=10; unsigned int variable; const unsigned

 int variabl

III.C character set

 A character set defines the valid characters that can be used in a source program or

interpreted when a program is running. The set of characters that can be used to write a source

program is called a source character set, and the set of characters available when the program is

being executed in called an execution character set. The basic source character set of C language

includes:

1. Letters: Uppercase letters: A, B, C, …, Z and lowercase letters: a, b, c, …, z

2. Digits: 0, 1, 2, …, 9

3. Special characters: , . : ; ! “ @ # % ^ & * () { } [] < > | / \ _ ~ etc.

4. White space characters: blank space character, horizontal tab space character, carriage return,

new line character, form feed character

iv.Expression:

 An expression in C is made up of one or more operands and operators that specify

 the computation of a value.

 – Operands: An operand specifies an entity on which an operation is to be performed. An

 operand can be a variable name, a constant, a function call or a macro name.

 – Operators: An operator specifies the operation to be applied to its operands.

 Example: a = 2 + 3. Here, 2 and 3 are the operands, + and = are the operators.

 The operands 2 and 3 are added using the + operator and the value of the addition (i.e. 5)

 is assigned to the variable a using the assignment (i.e. =) operator.

Based on number of operators present in an expression, expressions are classified as

 simple expressions and compound expressions.

 – Simple Expressions: An expression that has only one operator in it is known as a simple

 expression. Example: b = a + 2.

 – Compound Expressions: An expression that involves more than one operator is called a

 compound expression. Example: b = 2 + 3 * 5.

6.(i) Describe the different type of format specifies.(8)

 Formatted Functions

 The formatted functions are scanf and printf functions.

1. scanf Function:

 The scanf function is used to take the input from the user. The rules for using

 scanf function are as follows:

i) The name of scanf function should be in lowercase.

ii) The inputs (or arguments) to scanf function are given within parentheses.

iii) The first input to scanf function should always be a format string. Ideally, the format

string of a scanf function should only consist of blank separated format specifiers as

shown below.

S.No. Data Type

Format

Remark

Specifier

1. char %c Single character

2.

int

%i Signed integer

3. %d Signed integer in decimal number system int

4. unsigned int %o Unsigned integer in octal number system

5.

unsigned int

%u Unsigned integer in decimal number system

6. %x

Unsigned integer in hexadecimal number system

unsigned int

7.

unsigned int

%X

8. long int %ld Signed long

9. short int %hd Signed short

10. unsigned long %lu Unsigned long

11. unsigned short %hu Unsigned short

12. float %f Signed single precision float in fractional format

13. float %e Signed single precision float in exponent format

iv) The inputs are separated by commas.

v) The inputs following the first input should denote variables. The symbol & is address-

of operator and is used to find the L-value of its operand.

Example: scanf(“%d”,&number); Here, &number refers to the L-value and the

variable number should be declared of type int.

Reading Strings from the Keyboard: The user can enter strings and store them in

 character arrays at the runtime by using the following methods:

i) Using scanf function:

 The scanf function with %s format specifier can be used to read a string from

the user. This function can be used to read only single word strings. The scanf function

automatically terminates the input string with a null character (i.e. \0), and therefore the

character array should be large enough to hold the input string plus the null character.

 It is not mandatory to use ampersand (&) , i.e. address-of operator, with string

variable names while reading strings using the scanf function, since the string variable

is a character array and the name of an array refers to the address of the first element of

the array.

Example: scanf(“%s”, name);

 where name is a character array (i.e. char name[30]). Here, if the usergives “Sam

Mine” as input, the string “Sam” is assigned to name, because the input contains multiple

words (i.e. Sam and Mine).

 The scanf function can be used to read a specific number of characters by

specifying the field width.

14. float %E Same as %e with E for exponent

15. float %g Signed value in either %e or %f based on given value

16. float %G Same as %g with E for exponent if e format is used

17. double %lf Signed double-precision float

18. String type %s String

19. Pointer type %p Pointer

Example: scanf(“%3s”, name); Here, if the user gives “Samuel” as input, the string

“Sam” is assigned to name, because if the length of the

entered string is more than the specified field width (i.e. 3),

the number of characters read will be at most equal to the

field width (i.e. 3).

 The scanf function can also be used to read selected characters by using search sets.

A search set defines a set of possible characters that can make up the string and it is case

sensitive. For example, a) scanf(“%[abcd]”,name); Here, if the user gives “daman” as input,

the string “da” is assigned to

name, because the scanf reads the input characters and stops

when a character except a, b, c or d is encountered.

b) scanf(“%[^abcd], name); Here, if the user gives “mechanical” as input, the string

“me” is assigned to name, because the search set is inverted

to include all the characters (even white-space characters)

except those between the brackets (i.e. a, b, c, d).

2. printf Function: The printf function is used to print the output in the display. The rules for

using printf function are as follows:

i) The name of printf function should be in lowercase.

ii) The inputs (or arguments) to printf function are given within parentheses.

iii) At least one input is required, and the first input to printf function should always be a

string literal.

iv) The inputs are separated by commas.

v) If values of identifiers are to be printed with the help of printf function, the first input to

printf function should be a format string. A format string consists of format specifiers and

they specify the format according to which the printing will be done.

Example: printf(“The value is %d”, num); It prints “The value is 20”. Here the variable

num should be declared of type int and it is

assumed that num = 20.

Unformatted Functions

C has three types of unformatted I/O functions.

1. Character I/O

2. String I/O

3. File I/O

